Solution to 1996 Problem 97


The probability current (density) is defined in the 1D case as

\begin{align*}J(x,t) = \frac{i \hbar}{2 m}\left(\Psi \frac{\partial \Psi^*}{\partial x} - \Psi^*\frac{\partial \Psi}{\partial...
J(x,t) represents the rate at which probability is ``flowing" past the point x. We plug in the given formula for \psi to find that
\begin{align*}J(x,t) &= \frac{i \hbar}{2 m}\left(\Psi \frac{\partial \Psi^*}{\partial x} - \Psi^*\frac{\partial \Psi}{\pa...
Therefore, answer (E) is correct.


return to the 1996 problem list

return to homepage


Please send questions or comments to X@gmail.com where X = physgre.